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INTRODUCTION

The rehabilitation of  edentulous jaws with a protocol 
prosthesis allowed extensive rehabilitations with 

implants and minimal surgical intervention.[1] However, 
biomechanical complications may impair the performance 
of  osseointegrated dental implants due to the overload 

Background: The increase of requests for implant-supported prosthesis (ISP) with zirconia as infrastructure 
has attracted a lot of attention due to its esthetics, biocompatibility, and survival rate similar to metallic 
infrastructure. The aim of this study was to evaluate the influence of two different framework materials 
on stress distribution over a bone tissue-simulating material.
Materials and Methods: Two ISP were modeled and divided into two infrastructure materials: titanium (Ti) 
and zirconia. Then, these bars were attached to a modeled jaw with polyurethane properties to simulate 
bone tissue. An axial load of 200 N was applied on a standardized area for both systems. Maximum principal 
stress (MPS) on solids and microstrain (MS) generated through the jaw were analyzed by finite element 
analysis.
Results: According to MS, both models showed strains on peri-implant region of the penultimate (same side 
of the load application) and central implants. For MPS, more stress concentration was slightly higher in the 
left posterior region for Ti’s bar. In prosthetic fixation screws, the MPS prevailed strongly in Ti protocol, 
while for zirconia’s bar, the cervical of the penultimate implant was the one that highlighted larger areas 
of possible damages.
Conclusions: The stress generated in all constituents of the system was not significantly influenced by the 
framework’s material. This allows suggesting that in cases without components, the use of a framework 
in zirconia has biomechanical behavior similar to that of a Ti bar.
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capable to induce bone remodeling,[2‑4] since human bone 
tissue is capable to adapt to the amount of  load received 
and to modify itself  by remodeling.[5]

For the prosthetic framework, the increase of  undesired 
stress occurs in the supporting tissues due to the fact that 
the lever arm is larger.[6] To reestablish chewing capacity in 
the posterior region, masticatory force may need to exist 
beyond the last implant.[7] Different materials strength 
used in frameworks is another possible factor to influence 
directly the success of  implant rehabilitation through the 
dissipation of  chewing load.[8,9]

A large number of  materials are available to produce 
a prosthesis infrastructure. It is recommended that 
metallic alloys exhibit high tensile strength (>300 MPa) 
and elastic modulus (>80,000 MPa) sufficient to prevent 
deformations and the cantilevers fractures.[10] The titanium 
alloy (Ti) has corrosion resistance, biocompatibility, low 
cost, and mechanical properties similar to auric alloy 
(good mechanical properties, but high cost) that makes 
Ti a viable material for the fabrication of  prosthesis 
infrastructure on implants.[11,12]

The increase of  requests for metal‑free prostheses led 
to the development of  ceramics with esthetics and 
biocompatibility.[13] The use of  implant‑supported 
prosthesis (ISP) with zirconia infrastructure has attracted 
a lot of  attention. As well as esthetics, it presents survival 
rate similar to metallic infrastructure.[14‑16]

Using finite element analysis (FEA) method, it is possible 
to study the stress generated in periimplant bone tissue 
on a preventive way.[17,18] FEA consists of  a promising 
noninvasive methodology that provides consistent 
results through measurement of  stress, compression, 
and displacement in implants and structures involved in 
rehabilitation.[19] This technique is considered complex 
due to the involvement of  biomaterials properties and 
microstructural details.[11,13] However, it is widely used in 
dental implant analyzes.[9,11,13,17,18,20‑24]

Several studies that evaluate the biomechanical behavior of  
ISP’s search to simulate a clinical situation and end up also 
studying the bone adaptive property.[20,21,25‑29] However, the 
cortical bone properties may vary in cadavers[22] because 
this tissue has anisotropic behavior making its elastic 
property vary according to the orientation of  the cells and 
fibers present.[28] Thus, to standardize in vitro studies and 
isolate biological variables, resinous materials whose elastic 
modulus approaches the bone tissue are used,[29] such as, 
polyurethane.[30]

Assuming that biomechanical behavior of  different 
materials used in the framework of  Branemark implant 
protocol was the goal for several recent researches[20,21,25‑27] 
and due to no study (within the authors’ knowledge) used 
a validated elastic modulus for laboratory studies, the aim 
of  this study was to evaluate the influence of  different 
framework materials (Ti or zirconia) on stress distribution 
over a bone tissue‑simulating material (polyurethane). The 
purpose of  this study was to use computer simulations 
to examine clinical situations with IPS in edentulous 
mandibles and identify the biomechanical behavior of  two 
different materials.

MATERIALS AND METHODS

Using computer‑aided design Rhinoceros software 
(Version 5.0 SR8, McNeel North America, Seattle, WA, 
USA), a model of  an edentulous jaw was made following 
the main anatomical characteristics: size, shape, and absence 
of  pathology. Initially, anatomical lines were constructed 
so that each face of  the outer surface could be obtained 
by the union of  three or four lines. After surfaces creation, 
they were fixed forming a volumetric solid body of  a 
hemi‑jaw. For complete construction of  the virtual jaw’s 
model, the bone structure was mirrored from the midline, 
allowing symmetry between the antimere sides. Then, a 
Boolean union ensured that a solid arcade was created. 
Then, external hexagon implants (10 mm × 4.1 mm) 
were modeled. The external threads diameter was 
established according to the dimensions provided by the 
manufacturer (as technology Titanium Fix – São José 
dos Campos, Brazil), and the platform showed 4.1 mm 
in diameter such as a conventional regular implant. The 
external hexagon was extruded 0.7 mm high and attached 
to the previously created cylindrical body.

The first implant was centrally attached to the mental 
foramen so that the other four implants could be positioned 
equidistant from the center [Figure 1]. After modeling all 
implants in their ideal positions, Universal Castable Long 
Abutment (UCLA) components were created according 
to the individual height of  each implant and attached to a 
standard framework model. The retaining screw was also 
shaped and allocated in its ideal position.

The bar presented a height of  6 mm from the bone 
surface and a 10 mm lever arm on each side. The orifices 
of  all screws were created to simulate a clinical situation 
of  structural strength of  this material. Finally, at the 
end of  the bar, two circles with 2 mm diameter were 
created on the upper outer surface to standardize the 
load application.

[Downloaded free from http://www.j-ips.org on Saturday, February 24, 2018, IP: 183.82.145.117]



Tribst, et al.: 3D‑FEA of different prosthodontic frameworks

The Journal of Indian Prosthodontic Society | Volume 17 | Issue 3 | July-September 2017 257

RESULTS

The generated results show the maximum principal stress 
(MPS) in the ductile solids and in the simulator model of  
the human bone tissue, the microstrains (MSs) generated 
were evaluated. In both models, a greater tendency of  total 
bone displacement occurred in the marginal area to the 
last implant (same side of  the vertical load application). 
The energy concentration was slightly higher in the 
left posterior region for Ti’s bar compared to zirconia’s 
bar [Figure 3].

Initially, the MS was presented based on the theory of  
bone remodeling as a function of  the load. According 
to the images of  Figure 4, the regions with masticatory 
overload may initiate an unwanted bone remodeling. In 
the generated results, the regions of  concentration of  
strains are both very similar, in which it is not possible to 
evidence significant difference in the colorimetric graph 
between both jaw models. The last two implants on the 
load side received most of  the masticatory forces, which 
shows the consistency of  the system. The proximal regions 
of  the periimplant tissue of  these two implants were 
more affected, which suggests the initiation of  any bone 
alteration in this region during this loading.

The MPS showed areas of  tensile, which can be 
understood as areas of  possible failure of  the structure 
in the function.

In ductile components of  the system, the MPS was also 
displayed in color scales. For prosthetic fixation screws, 
the stress prevailed strongly in Ti protocol [Figure 5]. 
While for zirconia’s bar, the platform of  the penultimate 
implant was the one that highlighted larger areas of  possible 
damages [Figure 6].

Figure 2: Mesh formed by tetrahedral elements

This study had the characteristic to not allowing results in 
the mandibular branches. Thus, they were removed from 
the model to avoid spent elements while exporting idle 
geometries.

Finite element analysis preprocessing
The Young’s modulus and Poisson’s ratio of  the materials 
[Table 1] were assigned to each solid component with 
isotropic, homogeneous, and linearly elastic behavior. All 
contacts were considered bonded since a torque failure is 
not the purpose of  the study. The same three‑dimensional 
model was used to receive materials properties and generate 
different results.

Mesh generation
The solid geometries were exported to ANSYS software 
(ANSYS 16.0, ANSYS Inc., Houston, TX, USA) in STEP 
format. Then, tetrahedral elements formed the mesh. 
A convergence test of  10% determined the total number 
of  control elements of  the mesh for 370.345 [Figure 2].

Loadings and fixations
The application of  an axial load (200 N) followed the 
delimited area in CAD: unilateral posterior superior 
region (left side) in the direction of  bone. For the fixation 
condition of  the system, the jaw base was selected, ensuring 
only movement restriction on the Z axis. In this way, the 
deformation generated in all directions inside the mandible 
could be computed.

Table 1: Properties of the materials used in finite element 
analysis methodology

Young’s modulus (GPa) Poisson’s ratio References

Titanium 110 0.33 [23]
Zirconia 200 0.31 [24]
Polyurethane 3.6 GPa 0.3 [31]

Figure 1: Three‑dimensional model of a jaw made in computer‑aided 
design with fixation of the five implants equidistant positioned
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DISCUSSION

In this study, FEA was used to investigate the influence of  
the two prosthodontic frameworks submitted to an axial 
load on the biomechanical behavior of  isotropic jaws. The 
analysis of  total displacement, consistency, and connectivity 
of  the mesh [Figures 2 and 3], MPS and MS demonstrated 
that this is a viable model for the analysis using the FEA 
method. To ensure that the quality of  the results would 
not be compromised due to the complexity of  the model’s 
geometry, it was necessary to divide the structure into a 
finite number of  elements with 10% convergence.

The results show not only the stress distribution on the 
surface of  the bone crest but also, the biomechanical 
behavior of  different constituents of  this type of  
rehabilitation treatment with implants. This demonstrated 
that the framework material minimally influences the 
distribution of  stress in the simulated jaw and implants.

In vivo studies revealed the values of  occlusal masticatory 
force around 220 N in the posterior region.[1,21,32] Thus, a 
load of  200 N was used in an attempt to simulate a result 
closer to that observed in vivo.

Rubo and Souza (2008)[9] affirmed that the lower elastic 
modulus, the greater exerted force on the abutments closest 

to the load. Therefore, if  a rubber structure was used, the 
entire load would be concentrated in the implant closest to 
the point of  load application. The authors concluded that 
the more rigid structure the more uniform stress dissipation 
and the less damage caused to the fastening screws due to 
the bending of  the reduced metal structure.

In the present study, two rigid structures were used 
(Ti and zirconia) with different elastic modulus. The 
results obtained are consistent since the stress dissipation 
did not concentrate at specific points as would occur if  
a flexible structure were used.[9] It is recommended that 
if  a metallic alloy is going to be used, it must have high 
strength (>300 MPa) and high elastic modulus (>80 GPa) 
to prevent deformation and structures failure.[33] These 
are characteristics of  less rigid materials than those used 
in this study.

For both jaw protocol models, the stress fields showed no 
significant discrepancies. However, a trend of  displacement 
in a wider area of  the Ti bar was observed in the region 
of  the lever arm [Figure 3]. The presence of  a lever arm 
has a remarkable effect on stress concentration,[5] and 
increases of  5 mm elevate the maximum von Mises stress 
by around 30% to 37% around the implants.[9] According to 
Glantz,[34] the amount of  strain of  the lever arm is directly 
proportional to the length and inversely proportional to 
the width and height of  it. In addition, there is a direct 
relationship between the amount of  strain and the applied 

Figure 4: Microstrain distribution pattern in jaw’s models under bar in 
(a) titanium and (b) zirconia

ba

Figure 5: Maximum principal stress in prosthetic fastening screws. 
(a) The situation with titanium bar. (b) Situation with bar in zirconia

ba
Figure 6: Maximum principal stress on implants. (a) Situation with 
titanium bar. (b) Situation with zirconia bar

ba

Figure 3: Displacement pattern in the models with energy 
concentration in the marginal area at the last implant for the bar 
in (a) titanium (presenting greater tension represented by the red 
color) and (b) zirconia

ba
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load and elastic modulus of  the used material. Since 
zirconia’s elastic modulus is 55% larger than Ti modulus, 
it seems that the influence of  the bar’s geometry (similar 
for both models) is much more influential in the results 
since they were within 10% of  convergence [Figure 4]. 
The results corroborate with the findings of  Bankoglu 
and Yilmaz,[13] where the authors observed that in a 
fixed partial anterior prosthesis with horizontal load, the 
maximum stress was similar in the models with zirconia 
and Ti infrastructure.

Although minute results and similar behavior for the bars, 
inferences can be made: in the simulated jaw, the generated 
strains were slightly higher with zirconia bar because 
stress areas were observed in the penultimate and central 
implants while compression areas encircled the last implant 
characterizing it as a fulcrum in a distal rotation tendency 
of  the system [Figure 5]. This tendency of  rotation was 
reflected on the fixation on an inverse way for the two 
materials. While Ti with similar elastic modulus of  the 
screw allowed stresses passage between them as a single 
body with less damage to the implant, the zirconia with all 
the rigidity characteristic of  its crystalline structure tended 
to further damage the prosthetic connection and less the 
screw [Figure 6].

Currently, zirconium oxide is increasingly used as an 
infrastructural material for fixed partial implant‑supported 
prostheses [10] s ince z irconia has high f lexural 
strength (900–1200 MPa) and hardness (1200 Hv), as well as 
chemical properties such as low corrosion potential and low 
thermal conductivity.[35,36] A selection factor for the use of  
zirconia as an infrastructure material is optimized esthetics 
due to the natural shadow of  the substrate, eliminating 
the grayish effect in the cervical areas of  prostheses with 
metallic alloy infrastructures.[37] As for longevity, several 
studies have shown that zirconia is not significantly affected 
by the aging test suggesting a long lifetime.[38]

In the case of  the dissipation of  masticatory force, other 
studies obtained high‑stress levels located under the applied 
load, that is, in the working side implants.[20,39] The results 
obtained in this work suggest that the prosthesis does not 
transmit the load identically through all implants, but these 
differences were not significant.

CONCLUSIONS

Within the limitations of  this study, it is possible to 
conclude that the stress generated in all constituents of  the 
system was not significantly influenced by the bar’s material. 
This allows suggesting that in cases without abutments, the 

use of  a framework in zirconia has biomechanical behavior 
similar to that of  a Ti bar.
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